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Statistics of Fourier modes in a turbulent flow
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~Received 26 October 2000; published 25 April 2001!

Fourier series are often used to discuss the properties of a homogeneous turbulent field. We investigate the
statistics of Fourier modes of the turbulent velocity field and of a passive scalar. The statistics of individual
Fourier modes is known to be Gaussian when the size of the systemL is much larger that the integral
~correlation! size l 0. The case where the integral size is of the order of the system sizeL; l 0, is studied by
direct numerical simulations in the range 20&Rl&80. At a givenRl , we find that the probabilities of large
fluctuations become larger when the wave number increases, in qualitative agreement with the notion of
intermittency. As the Reynolds number increases, however, the probability density functions become closer to
Gaussian, in sharp contrast with the behavior of velocity increments. We also show that in a simple model of
cascade, the Fourier series decomposition is not appropriate to capture intermittency effects. Last, we discuss
other issues related to our results.
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I. INTRODUCTION

Fully developed turbulence in fluids exhibits a number
unusual properties@1–3#. Despite much theoretical effor
small-scale intermittency remains a challenging proble
One of the main observations is that, as one consid
smaller and smaller scales in the flow, the probability dis
bution functions~PDF’s! of the velocity increments, denote
here asDu(r )[@u(r )2u(0)#, develop wider and wider
tails. Equivalently the dimensionless moments,Sn(r )
[^@Du(r )#2n&/^@Du(r )#2&n, grow whenr decreases@4#. An
even more pronounced effect is found in the related prob
of a passive scalar mixed by a turbulent flow@5#.

These observations are at odds with the results of
Kolmogorov 1941 theory@6# ~in short, K41!, which would
predict that theSn(r ) are all independent ofr in the inertial
range of scales. A number of phenomenological models h
been proposed to describe this effect@1–3#. So far, analytic
calculations have been possible only in simplified models
passive scalar advection@7–9#.

Experimentally, most of the work has been devoted to
velocity scalar differences and its moments. One may h
ever ask more general questions about theN-point correla-
tion function: ^u(xW1)u(xW2) . . . u(xWN)&, or about its Fourier
analog:^û(qW 1)û(qW 2) . . . û(qW N)& ~with the condition thatqW 1

1qW 21•••1qW N50W when the flow is homogeneous!. Due to
the recent development of ultrasound scattering experim
@10#, it is now possible to directly obtain information on th
Fourier components of the vorticity field and of the tempe
ture field, hence on a passive scalar field.

Early closure attempts of the Navier-Stokes equati
were formulated in Fourier space@11,12#, since it is usual to
use the Fourier representation to investigate correlation fu
tions when the problem is homogeneous. Indeed the Nav
Stokes equations can be readily written in terms of the F

rier amplitudesuŴ (kW ,t). AmplitudesuŴ (kW ,t) play the role of
elementary dynamical variables of a kind of infinite-bo
problem. Coupling among them results from the nonlinea
of the Navier-Stokes equations through a complex web
triadic interactions. Due to the infinite number of modes
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interaction added to complex geometry or incompressibi
constraints ink space, it seems rather hard to analyze th
statistical properties. Even in a strongly decimated appro
mation, such as the shell models of turbulence, basic d
culties remain, namely the presence of both dissipation
strong nonlinearity. In fact, it is only in the inviscid an

unforced case that success in using theuŴ (kW ,t) variables has
been achieved to describe the energy equipartition s
~Boltzmann-Gibbs equilibrium for the cutoff Euler dynam
ics! @13,14#.

The first and easiest step is to investigate theequal-time
univariatestatistics of the Fourier amplitudes. It is natural
argue that the Fourier modes, which result from some v
ume average, are not well suited for describing interm
tency, which is a spotty phenomenon. However, this ar
ment does not hold in the far-dissipation range where str
intermittency of the Fourier modes is expected, see bel
As a consequence of the lack of space localization of
Fourier representation, individual Fourier modes suffer fro
a spatial central limit effect: for a homogeneous veloc
field with finite correlation lengthl 0 confined in a cubic box
of sizeL with periodic boundary conditions, it is well know
that the univariate distribution of individual inertial Fourie
component should be asymptotically normal in the lim
l 0 /L→0, even if the velocity field is highly intermittent in
physical space@15#. It is in fact a particular case of the cen
tral limit theorem as it applies to weighted integrals of ra
dom fields~see Ref.@16#, and also Ref.@17# in the case of
cosmological density fields!. To illustrate this point, we use a
one-dimensional~1D! notation for the sake of simplicity. Le
us expand the velocity field in a Fourier series

u~x,t !5(
k

û~k,t !eik•x. ~1.1!

Then û(k,t) reads

û~k,t !5
1

LE e2 ik•xu~x,t !dx. ~1.2!
©2001 The American Physical Society13-1
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Consider a Fourier modeû(k,t) with k.2p/ l 0. For L suffi-
ciently large, it is possible to divide the segment of sizeL
into subsegments of a size multiple of 2p/k and large com-
pared tol 0. Then using Eq.~1.2!, û(k,t) can be rewritten as
a sum of very many weakly correlated and identically d
tributed terms. For an energy cascade of a fixed size, ass
ing the velocity field to satisfy certain mixing condition
~roughly speaking, the correlations are supposed to decr
fast enough!, the central limit theorem can thus be applied
the real or imaginary part of any inertial or dissipative Fo
rier component~more precisely, it applies to the joint stati
tics of the real and imaginary part properly renormalize!.
Nevertheless, because of intermittency, it is hard to estim
how the convergence to Gaussian statistics depends on
wave number.

This trivial central limit effect seems in fact independe
of the detailed dynamics@18#. Hence, when the correlatio
length is of the order of the domain extension, like in dire
numerical simulations~DNS! or in some laboratory experi
ments, one may expect intermittency corrections for in
vidual Fourier components. The purpose of this paper is
investigate this issue, and in particular to compare with
cent experimental results@10#. Naively, one would expec

that the statistical properties ofuŴ (kW ,t) are similar to the
properties ofDu(r ) for r;1/k. A recent study seems t
support this claim@19#. Our own numerical results are i
sharp contrast with this expectation, as we will explain
Sec. II. In qualitative agreement with the experimental
sults @10#, we found very little variation of the statistica

properties of theuŴ (kW ,t) through inertial scales. In Sec. III
we consider an intermittent velocity field resulting from
simple wavelet cascade, and show that the statistics of F
rier modes is almost insensitive to intermittency in the se
that the distribution ofû(k) depends very weakly onk. The
last section is devoted to discussion. There we address
question of sweeping effects as far as Fourier modes
concerned, and also the link with some simplified dynami
models of turbulence such as the so-called shell model
tree models, and last, the possiblity of looking simul
neously at several wave numbers to take into account w
coupling between Fourier modes and to measure inter
tency.

II. NAVIER-STOKES AND PASSIVE SCALAR DYNAMICS

A. Numerical methods

We have simulated numerically the incompressi
Navier-Stokes equations along with the passive sc
equation:

] tuW 1~uW •¹W !uW 52¹W p1n¹2uW , ~2.1!

¹W •uW 50, ~2.2!

] tu1~uW •¹W !u5k¹2u. ~2.3!

The spatial domain is a cubic box with a periodicity leng
equal to 2p. Our code has been described elsewhere@20#,
05631
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and we briefly recall its main features. We use a pseudos
tral, fully dealiased code. The solution is time stepped b
leap-frog algorithm, second order in time. A homogeneo
isotropic, steady state is obtained by imposing a conserva
dynamics in the low wave-number modes (k<1.5). We also
perform DNS of incompressible Navier-Stokes equatio
with hyperviscosity (21)h11n¹2h (h52 andh58).

The velocity and scalar field being homogeneous, the
tistics of Fourier components is phase invariant. In parti
lar, the real and imaginary parts of these quantities have
same distribution; their odd order cross correlation are z
@^Re(•)pIm(•)q&50 if p1q odd#, but the real and imagi-
nary parts are not strictly independent~indeed we expect
their statistical coupling to be very weak, see Sec. IV C!.

Because of incompressibility,uŴ (kW ) may be represented in

terms of its projections on two units vectorsê1(kW ) and

ê2(kW ) such that„kW ,ê1(kW ),ê2(kW )… forms an orthogonal basis
This decomposition allows us to carry out statistics

û6(kW )[uŴ (kW )•ê6(kW ). Because of isotropy,û1(kW ) andû2(kW )
have the same statistics. Using again isotropy, the PDF’
the real and imaginary parts ofû(kW ) and û6(kW ) were accu-
mulated over thin shells of wave vectorskW , whereK21/2
<ukW u<K11/2 for a number of values ofK. We consider also

the statistics ofuû(kW )u and uuŴ (kW )u to take into account the
coupling between components and between real and im
nary parts. We estimated the various PDF’s by a histogr
binning procedure. The statistics were accumulated ove
sampling timeTs . In terms of the~large scale! eddy turnover
time Te[ l 0 /^ux

2&1/2, the sampling timeTs was always larger
than 13Te . Even so, it should be noted that, especially f
low wave numbers, despite accumulation in think shells,
much less data are collected in the statistics of a Fou
component than in the statistics of differences in real spa
which are computed at each grid point.

For our runs with Newtonian dissipation, the Reynol
number, based on the Taylor scale,l $l
[@^ux

2&/^(]xux)
2&#1/2%, was varied in the range 20&Rl&80;

the Prandtl number is kept unity.
We used hyperviscous DNS in order to qualitatively d

criminate between inertial and dissipative dynamics. The
merical integration requires very little modifications. For h
perviscous runs, the Reynolds number is not well defin
~see however Ref.@21# for a proposal!. In Table I, we give
the hyperviscous indexh and the wave numberkd corre-
sponding to the maximum of the dissipation spectrum.

To measure the numerical resolution of the small scale
Newtonian runs, one usually computes the productkmaxh,
wherekmax is the largest wave number andh[(n3/«)1/4 is
the Kolmogorov scale,« being the rate of dissipation of ki
netic energy per unit mass. We maintainedkmaxh*1.5. By
analogy, one may equilibrate a turnover time with a hyp
viscous dissipation time to define the analog of the Kolmo
orov scalehh[(n3/«)1/2(3h21) depending on the power o
the hyperviscous dissipation. However, the correspond
values of the productkmaxhh have not been documented
the literature to estimate the resolution of the small sca
3-2
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TABLE I. A list of our NS runs with parameters.

Run no. Rl Pr N h kd l 0
u l 0

u kmaxh Ts /Te

NS1 20.0 1 40 1 2 1.7 1.1 2.3 1507.
NS2 40.0 1 64 1 4 1.5 1.0 1.8 103.
NS3 80.0 1 128 1 9 1.3 1.0 1.5 13.
NS4 64 2 13 1.2 53.0
NS5 64 8 25 1.2 50.0
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Here, we insisted that the value of the dissipation spectr
k2hE(k), for the largest available wave number in the sim
lation, was less than;7% of its maximum value.

We stress that the forcing scheme has been uncha
in our various runs. We computed the integral scales of
velocity and scalar field, defined asl 0

u[(p/2)1/
^ux

2&*k21Eu(k) dk and l 0
u[p(1/̂ u2&)*k21Eu(k) dk. Be-

tween our various runs, we getl 0
u'1.5 andl 0

u'1.0. With our
box size L52p and because of periodicity, we expect
weak central limit effect on the individual Fourier modes.

Table I shows a list of our runs with the sampling tim
and parameters that permit us to judge the quality of
resolution.

B. Results at„very… low Rl

The PDF’s of Re@ û(kW )#, Re@ û6(kW )#, in units of their
root-mean-square~rms! values are shown in Figs. 1~a! and
1~b!, for several values of the wave numberK, andRl;20.
At Rl;20, there is no basis for an inertial range casca
since the velocity and scalar spectra are falling off roug
exponentially, see Fig. 2. Thus, the intermittent behavior
the PDF’s seems at first surprising.

In fact, the behavior of the PDF’s cannot be related
inertial intermittency but rather to dissipative intermitten
@22#. The far-dissipation range has been predicted to disp
strong intermittency even at low Reynolds numbers;
physical grounds, if the velocity spectrum decreases fa
than algebrically, every minute fluctuation of« should be
tremendously amplified askh→` @23#. High-resolution
simulation of the dissipation range atRl;15 has confirmed
that dissipative intermittency is associated with gentle spa
variation of large-scale structure@24#. Frisch and Morf gave
more systematic and generic arguments@25#. From a dy-
namical point of view, the zero fixed point of the linearize
dynamics may also play an important role in the occure
of dissipative bursts@26#. Due to the sharp decay of th
velocity spectrum in our simulation atRl;20, even if we do
not have a clear dissipation range, we believe that the pr
ous explanation applies.

The arguments referred to above suggest that the inter
tency of theû(k) should growwithout limit as kh→`, at
any finite Reynolds number. The behavior of the Four
components is therefore different from the behavior of
velocity differences; at finite Reynolds number, whenr→0,
all the moments of the distribution ofDu(r ) are bounded
from above by the moments of the distribution of the gra
ents, which are finite.
05631
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C. Results at higherRl

In Figs. 1~c!–1~d! and 1~e!–1~f!, we present the sam
study at, respectively,Rl;40 andRl;80. As it is the case
at Rl;20, the Fourier modes of the velocity and scalar fie
present the same qualitative behavior. For each Reyn

number, the PDF’s of Re@ û(kW )#/^Re@ û(kW )#2&1/2 and

Re@ û6(kW )#/^Re@ û6(kW )#2&1/2 become wider when the wav
number increases. But remarkably, this effect is reduced
the Reynolds numbers is increased. AtRl;80, the PDF’s
are very close to Gaussian; in particular, the widening eff
is clearly much weaker than for the velocity differences.

We show in Figs. 3~a!–3~d! the PDF’s of

uû(kW )u/^uû(kW )u2&1/2 and uuŴ (kW )u/^uuŴ (kW )u2&1/2 obtained atRl

;80 in semilog and log-log coordinates. As before, a ve
weak evolution through the scales is observed. Assuming

real and imaginary parts ofû(kW ) to be Gaussian and inde
pendent, it is straightforward to check thatZ

5uû(kW )u/^uû(kW )u2&1/2 should be distributed according to th
Rayleigh distribution P(Z)52Z exp(2Z2) defined for Z
>0. Similarly, with the additional hypothesis ofû1(k) and

û2(k) being independent,Z5uuŴ (kW )u/^uuŴ (kW )u2&1/2 should be
distributed according to the distribution P(Z)
58Z3 exp(22Z2) defined forZ>0. The agreement with the
two above distributions is only good for very small deviatio
(Z→0), see Figs. 3~b! and 3~d!. The deviations observed a
larger values ofZ are related to the deviations from th
Gaussian distribution observed at large values
Re@ û(kW )#/^Re@ û(kW )#2&1/2 and Re@ û6(kW )#/^Re@ û6(kW )#2&1/2.
But there is still a good collapse of the PDF’s in the inert
range.

In Ref. @19# and in the case of Navier-Stokes~NS!
dynamics, it has been argued on the basis of DNS wit
643 resolution that scaling exponents of longitudin
increments and individual Fourier modes, respective
zp and zp , should only differ by a linear ‘‘phase-space
factor: zp5zp13p/2. We already stressed that the statist
of individual Fourier components are always plagued
central limit effect, and thus are very unlikely to b
universal, due to the strong influence of the ratiol 0 /L.
More significantly, the above relation implies thatzp

2p/2z25zp2p/2z2, so the quantitiesuuŴ (kW )u/^uuŴ (kW )u2&1/2 @or
Re@ û6(k)#/^Re@ û6(k)#2&1/2] andDu(r )/^Du(r )2&1/2 should
present the same multiscaling. The possibility of determin
accurate exponents from our numerics is somewhat ques
able. But clearly, at our highest Reynolds numberRl;80,
3-3



on

s
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FIG. 1. PDF’s of Re@ û(kW )# and Re@ û6(kW )# normalized by their rms values. Gaussian PDF of variance unity is shown for comparis
in dashed line.~a! and ~b!: Rl;20 ~run NS1!, k53;6;9;12;15;18.~c! and ~d!: Rl;40 ~run NS2!, k55;10;15;20;25;29.~e! and ~f!: Rl

;80 ~run NS3!, k511;17;23;29;35;41;47;53;59. The flatnessFk[^Re@ û6(kW )#4&/^Re@ û6(kW )#2&2 of the modek'10 steadily decrease
when the Reynolds number increases; atRl;20, Fk5955.0, atRl;40, Fk51053.5, and atRl;80, Fk51153.1.
po

ey
e

ents

ssive
the evolution through the scales of our PDF’s cannot sup
the heuristic ansatz proposed in@19#.

As our results show a systematic evolution with the R
nolds number, one may wonder what happens at higher R
05631
rt
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nolds numbers. The recent ultrasound scattering experim
@10# performed in a turbulent jet in air (Pr50.7), weakly
heated so that the temperature fluctuations act as a pa
scalar, provide a clue as to what may happen. AtRl564,
3-4
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FIG. 2. Velocity spectrum forRl;20 ~solid line!, ;40 ~dashed
line!, ;80 ~dotted line!. The inertial,k25/3 range is essentially ab
sent at the lowest Reynolds number, and gradually builds up as
Reynolds number increases.
05631
statistical measurements of the Fourier components of
temperature field agree qualitatively with our numerical
sults. We note that this agreement between the numerical
experimental results provides a partial validation of the
trasound scattering method. In a different configuration a
at higher Reynolds numbers@27#, the inertial PDF’s have a
non-Gaussian shape, with seemingly exponential tails. H
ever, once renormalized in rms units, only a slight interm
tent evolution is observed in the inertial range. The expe
mental results should be interpreted with caution, since in
latter configuration, a much poorer spectral resolution
achieved due to the size of the flow@27#. As a result, it is not
clear whether the Fourier components are genuinely m
sured. In any event, we have to distinguish between
shapeof the PDF’s and theirevolutionthrough scales~scal-
ing!. One may naturally suspect the large scales of the fl
to be responsible for the form of the PDF’s. In our simu
tions, the forcing modes are very close to Gaussian. We n
also that the large scales determine the ratiol 0 /L and so the
influence of the central limit effect. Independent of the p
cise shape, the absence of evolution of the PDFs of the F
rier components observed experimentally and numericall

he
FIG. 3. PDF’s of uû(kW )u/^uû(kW )u2&1/2 and uuŴ (kW )u/^uuŴ (kW )u2&1/2 at Rl;80 ~run NS3!. Wave numbers are k
511;17;23;29;35;41;47;53;59.~a! and ~b! PDF P(Z)52Z exp(2Z 2) is shown for comparison in dashed line.~c! and ~d! PDF P(Z)
58Z 3 exp(22Z 2) is shown for comparison in dashed line.
3-5
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our highest available Reynolds numbers is very suggest
Due to the limited inertial range available in our simul

tions, we reconsider the problem with a hyperviscous dam
ing (21)h11n¹2h. In Figs. 4~a!–4~b!, we present the result
of 643 hyperviscous runs withh52 andh58. Again we find
that the PDF’s of Re„û6(kW )… are very close to Gaussian, a
the way down to the dissipative scale. In particular forh

58, it is clearly seen that the PDF’s of Re„û6(kW )… almost
collapse to a Gaussian shape fork<25. A clear, albeit small
deviation can be seen fork529.kd525.

Our numerical results demonstrate that as long as the
linear term dominates, the distribution of Fourier modes
essentially Gaussian. As soon as viscous processes be
important, the complex interplay between nonlinearity a
dissipation results in larger fluctuations of the Fourier mod

III. LACK OF INTERMITTENCY OF FOURIER MODES
IN A SIMPLE MODEL OF CASCADE

In this section, we consider a simple 1D wavelet casc
that allows us to generate multiaffine velocity fields@28#. We

FIG. 4. PDF’s of Re@ û6(kW )# normalized by their rms values,
for hyperviscous NS runs. Gaussian PDF of variance unity is sh
for comparison in dashed line.~a! Hyperviscous indexh52 ~run
NS4!, k55;10;15;20;25;29.~b! Hyperviscous indexh58 ~run
NS5!. k55;10;15;20;25;29.
05631
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demonstrate that the Fourier transform of the synthetic
locity field does not exhibit any particular intermittency, as
result of a ‘‘hidden’’ spatial central limit effect. We sha
discuss the validity of this approach. We note that simi
computations have already been done for the wavelet an
sis of a probabilistic wavelet cascade@29#.

Following Benziet al. @28#, we consideru(x) given by
the following wavelet decomposition

u~x![ (
n52`

1`

(
j 52`

1`

an, jCn, j~x!, ~3.1!

where

Cn, j~x!52n/2C0,0~2nx2 j !, ~3.2!

and C0,0 is the mother wavelet, with zero mean, localiz
both in space and scale. For the discrete case with 2N points
xs5s(1/2N) in the interval@0,1#, we have

u~xs![ (
n50

N21

(
j 50

2n21

an, jCn, j~xs!. ~3.3!

The coefficientsan, j are defined using the following multi
plicative process:

a0,051, ~3.4!

an11,2j5en11,2jWn11,2jan, j , ~3.5!

an11,2j 115en11,2j 11Wn11,2j 11an, j . ~3.6!

The en, j are independent random variables equal61 with
probability 1/2 ~this simplifying choice will be discussed
later!. The random multipliersWn, j are independent positive
variables, with the same distributionP(W).

It is easy to show that̂uan, j up&5^Wp&n, where the aver-
age is performed over the ensemble of the realizations of
multiplicative process. Denotingzp[2 log2^W

p&, we have
^uan,.up&522zp^uan21,.up&522nzp. The scaling exponentszp
are chosen to give intermittent multiscaling. Note that in t
model,L51 is fixed, andl 0;L since there is only a single
mother eddy.

Taking the discrete Fourier transform of Eq.~3.3!, û(k)
reads

û~k!5 (
n50

N21

(
j 50

2n21

an, jĈn, j~k!. ~3.7!

We remind that theĈn, j (k) are localized ink space. More-

over, at fixedn, the Ĉn, j (k) differ only by a ~deterministic!

phase term@Ĉn, j (k)5e2 ik j /2n
Ĉn,0(k)#. Therefore, we fur-

ther simplify by considering only

Sn[ (
j 50

2n21

an, j . ~3.8!

We expectû(k) andSn to have the same relative scaling.

n

3-6
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We note that the sum in Eq.~3.8! is over 2n terms. If one
intends to invoke the central limit theorem forSn ~properly
renormalized!, the crucial point is the spatial correlations
thean, j . For the multiplicative process considered here, o
may expect the spatial correlations of thean, j to decrease
only slowly through the scales, while thean, j become more
intermittent. So there is no hope for a direct application
the central limit theorem asn→`. Instead, we have to com
pute the moments ofSn , which involve naturally the spatia
correlations of thean, j . Therefore, we stress that the re
evance of this approach relies on the capacity of the mo
~3.4!–~3.6! to describe the spatial correlations of thean, j for
a 1D spatial section in true 3D turbulence~note that we dea
here with 1D Fourier transform!. Experimental tests hav
been made in Ref.@30# for the space-scale correlation

^vn1 , j 1
vn2 , j 2

&, wherevn, j[
1
2 ln an,j

2 2^1
2 ln an,j

2 &. A qualita-
tive agreement has been found with the models~3.4!–~3.6!,
with some additional features~a better agreement is obtaine
for a nonscale-invariant cascade, see Ref.@30#!. Unfortu-
nately the previous test does not probe the space-scale p
correlations of the wavelet coefficients, i.e. thean, j /uan, j u
correlations. Though the sign of a wavelet coefficient
function of the wavelet basis functions and oscilla
strongly with the spatial position, such correlations ha
physical meaning and are involved in thean, j correlations.
In our simple model, thean, j /uan, j u are linked to theen, j
product of the ancestors, theen, j being random independen
multipliers equal to61 with probability 1/2.

In the following, we will focus on the flatness ofSn to
estimate the intermittency ofû(k). For n>1, observe that
^Sn&50 since^an, j&50. It is easy to obtain the second m
ment ofSn :

^Sn
2&5(

j
^an, j

2 &1 (
j 1Þ j 2

^an, j 1
an, j 2

& ~3.9!

52n^an,.
2 &1 (

j 1Þ j 2

^en, j 1
&^Wn, j 1

&^en, j 2
&^Wn, j 2

&

3^an21,[1/2 j 1]an21,[1/2 j 2]&, ~3.10!

where @x# denotes the integer part ofx>0. As ^en, j&50,
nondiagonal terms disappear:

^Sn
2&52n^an,.

2 &. ~3.11!

Similar computations for the fourth moment ofSn give

^Sn
4&52n^an,.

4 &13 (
j 1Þ j 2

^an, j 1

2 an, j 2

2 &. ~3.12!

Then, we obtain the flatness ofSn

^Sn
4&

^Sn
2&2

5
1

2n

^an,.
4 &

^an,.
2 &2

1
3

22n (
j 1Þ j 2

^an, j 1

2 an, j 2

2 &

^an,.
2 &2

. ~3.13!

To take into account the correlations among thean, j
2 terms,

we introduce
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K j 1 , j 2

n [
^an, j 1

2 an, j 2

2 &2^an,.
2 &2

^an,.
4 &2^an,.

2 &2
.0. ~3.14!

Using K j 1 , j 2

n , Eq. ~3.13! can be rewritten as follows:

^Sn
4&

^Sn
2&2

531
1

2n

^an,.
4 &23^an,.

2 &2

^an,.
2 &2

1
3

22n (
j 1Þ j 2

K j 1 , j 2

n ^an,.
4 &2^an,.

2 &2

^an,.
2 &2

. ~3.15!

The second term of the right-hand side of Eq.~3.15! corre-
sponds to the case of independentan, j ~with respect to the
spatial j index!. The 2n number of terms in the sum ofSn
competes with the increased intermittency of thean, j as n
→`. Assuming 0,2z22z4,1, we get

1

2n

^an,.
4 &23^an,.

2 &2

^an,.
2 &2

5
2(2z22z4)n23

2n

;2(2z22z421)n→0 as n→`. ~3.16!

The evaluation of the third term of Eq.~3.15! is more deli-
cate. We observe that 0,K j 1 , j 2

n ,1 andK j 1 , j 2

n 5K j 2 , j 1

n . But

the multivariate statistics of thean, j is not homogeneous in
its spatial j index, and we may haveK j 1 , j 2

n ÞK j 11s, j 21s
n .

Nevertheless, one may show thatK j 1 , j 2

n <K0,j 22 j 1

n for j 2

> j 1. This allows us to obtain the following inequalities:

(
j 1Þ j 2

K j 1 , j 2

n 52 (
j 1, j 2

K j 1 , j 2

n

<2 (
j 1, j 2

K0,j 22 j 1
<2/2n (

j 51

2n21

K0,j . ~3.17!

Denoting (n̂, ĵ ) the first common ancestor of (n, j 1) and
(n, j 2), K j 1 , j 2

n takes the form

K j 1 , j 2

n 5
^W2&2(n2n̂)^a n̂, ĵ

4
&2^W2&2(n2n̂)^a n̂, ĵ

2
&2

^W4&n2n̂^a n̂, ĵ
4

&2^W2&2(n2n̂)^a n̂, ĵ
2

&2

~3.18!

5
^a n̂, ĵ

4
&/^a n̂, ĵ

2
&221

~^W4&/^W2&2!n2n̂^a n̂, ĵ
4

&/^a n̂, ĵ
2

&221
~3.19!

5
2(2z22z4)n̂21

2(2z22z4)n21
. ~3.20!

Therefore, at fixed n,K j 1 , j 2

n depends only on the leveln̂ of

the first common ancestor of (n, j 1) and (n, j 2). Using Eq.

~3.20!, we evaluate( j 51
2n21K0,j

n

3-7
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(
j 51

2n21

K0,j
n 5

1

2(2z22z4)n21
(
q50

n21

~2q(2z22z4)21!32n212q

~3.21!

5
2n21

2(2z22z4)n21
S 122(2z22z421)n

122(2z22z421)
2

1222n

121/2D .

~3.22!

Thus, the following bound holds for the third term of E
~3.15!

0,
3

22n (
j 1Þ j 2

K j 1 , j 2

n ^an,.
4 &2^an,.

2 &2

^an,.
2 &2

<
6

2n

2n21

2(2z22z4)n21
S 122(2z22z421)n

122(2z22z421)

2
1222n

121/2D ^an,.
4 &2^an,.

2 &2

^an,.
2 &2

~3.23!

<
6

2n

2n21

2(2z22z4)n21

3S 122(2z22z421)n

122(2z22z421)
2

1222n

121/2D
3~2(2z22z4)n21! ~3.24!

5O~1! as n→`. ~3.25!

Finally, under the hypothesis 0,2z22z4,1, we get for the
flatness ofSn

^Sn
4&

^Sn
2&2

531O~1! as n→`. ~3.26!

Clearly, for such a cascade, a limited intermittency of
individual Fourier modes is expected asn→`.

The previousen, j play the role of an approximate random
phase for the ‘‘eddies’’an, j , which leads to important sim
plifications. In the following, we consider the opposite~also
unphysical! caseen, j[11. Since noŵ an, j&.0, we intro-
duce the centered variablesan, j8 [an, j2^an, j& and Sn8[Sn

2^Sn&5( jan, j8 . We compute the second and fourth mome
of Sn8 :

^Sn8
2&52n^an,.82&1 (

j 1Þ j 2

^an, j 1
8 an, j 2

8 &, ~3.27!

^Sn8
4&52n^an,.84&13 (

j 1Þ j 2

^an, j 1
82 an, j 2

82 &14 (
j 1Þ j 2

^an, j 1
83 an, j 2

8 &

1 (
j 1 , j 2 , j 3 , j 4

N $ j 1 , j 2 , j 3 , j 4%>3

^an, j 1
8 an, j 2

8 an, j 3
8 an, j 4

8 &. ~3.28!
05631
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The sum in the last term of Eq.~3.28! is over sets containing
more than three different indices. In the last term of E
~3.28! the sum is over;n4 terms instead of;n2 terms for
the two previous sums. Therefore, the asymptotic beha
of ^Sn8

4&/^Sn8
2&2 is not obvious. Since the last term of E

~3.28! is not easy to evaluate analytically, we perform n
merical simulations. The distribution of log2(W) is taken as a
Gaussian with meanm520.421/2 and variances2

50.038, in order to mimic the multiscaling ofDu(r ) in true
turbulence. We took 2N points withN510, which enabled us
to carry out 108 realizations of the multiplicative process. T
have access tou(x) from the coeffcientsan, j , we used the
discrete wavelet transform from@31# ~pyramidal algorithm
@32#!. We chose the 20-tap wavelet of Daubechies@33#,
which is an orthonormal periodic wavelet basis. Then
obtained theû(k) by a simple fast Fourier transform. In Fig
5~a!, we show the PDF’s ofSn8/^Sn8

2&1/2 for n54, . . . ,9. We
present the same results in Fig. 5~b! for Re„û(k)… with k
51132n andn50, . . . ,5 ~this choice ofk corresponds ap-
proximately to the maximum of the spectral supports of
Cn, j (x), which eliminates spectral overlaps!. In the two
cases, it is hard to see any reliable evolution through

FIG. 5. PDF’s of Sn8 and Re@ û(kW )# normalized by their rms
valuess for the multiplicative cascade of Sec. III. Gaussian PD
of variance unity is shown for comparison in dashed line.~a!
n54, . . . ,9.~b! k51132n, n50, . . . ,5.
3-8
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scales. The shape difference between the PDF’s ofSn8 and

Re„û(k)… is due to the phase factors of theĈn, j (k). These
numerical results demonstrate that, even in the absence
spatial phase decorrelation in the multiplicative process,
intermittency of theû(k) is reduced~though we cannot make
any asymptotic statement!.

We believe that despite its caricatural simplicity, t
simple model we considered sheds some light on the b
mechanism, which reduces the intermittency of the in
vidual Fourier modes. The main finding is that the decre
of spatial correlations with the step of the cascade, al
small, competes with the increasing intermittency throu
the scales to give rise to a reduced intermittency for theû(k)
via a kind of spatial central limit effect. The previous mod
has the advantage to make possible some easy analytica
numerical investigation. But we do not expect our qualitat
conclusion to depend on the existence of an exact mult
cative cascade or on the space dimension. Additionaly
considered the 1D Burgers model, which is a well-kno
case of extreme intermittency: DNS with ad-function corre-
lated in time forcing at the largest scales gave us again v
weak intermittency for the inertialû(k) ~but with sub-
Gaussian statistics, results not shown!. Finally, we point out
that in true turbulent dynamics, we expect the abo
mentioned decorrelation process through the scales to
only an inertial feature. The strong dissipative synchroni
tion observed in numerical simulation of tree models@34#
comfort us in this idea. Also such a breakdown of the de
rrelation process in the dissipation range would be com
ible with the dissipative intermittency of theû(k) as kh
→`.

IV. DISCUSSION

A. Fourier modes and sweeping effect

It is tempting to relate the lack of large fluctuations
Fourier modes in the inertial range to their fast decorrelat
due to sweeping effect. The idea that the Fourier mo
decorrelate faster than predicted by standard cascade
ments has been proposed by Kraichnan in the context of
Direct Interaction Approximation~DIA ! @35#. There, it was
shown with systematic arguments that the time decorrela

of an inertial Fourier modeuŴ (kW ,t) is of the order of 1/v0k,
wherev0 is the rms of velocity fluctuationŝux

2&1/2. There is
now almost no doubt that it is effectively the case for tr
turbulence~see e.g., Ref.@36# and references therein!. For
the small scales of the real-space velocity field, the sweep
decorrelation is essentially a kinematic effect which can
thought of as a random Galilean transformation@37# ~see
also Ref.@1#, Secs. 6.2.5 and 7.3!; the small structures ar
swept past fixed points almost as a whole by the rand
energetic large-scale motions, and so there is only little
ergy redistribution between small and large scales. In
grangian coordinates, the sweeping effect is eliminated
the expected turnover time (t;r 2/3«21/3) should be~at least
approximatively! recovered. But as far as the decorrelati

of a given inertial Fourier modeuŴ (kW ,t) is concerned, if one
interprets the sweeping effect as being due to rapidenergy
05631
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exchangesbetween the modekW and its many neighboring
modes (kW1qW ), via the mixing action of the energy contain
ing range (uqW u;1/l 0!ukW u), such an approximation leads t

improbable large fluctuations foruŴ (kW ,t); the sweeping time
1/v0k being smaller than the local turnover time of the ca
cade t;«21/3k22/3, when k→`, the rapid energy mixing
may bypass the anomalous cascade fluctuations for theindi-
vidual Fourier modes. Note also that a lateral energy
change between wave numbers of nearly the same magn
will not contribute to the energy cascade.

In fact, the above argument is likely to be wrong sin
there is no need to invokeenergy exchangebetween modes
to explain their fast decorrelation. We illustrate this po
with a random Galilean transformation, following an arg
ment presented in Ref.@38#. Under a Galilean transformatio
xW85xW1VW t and uW 8(xW8,t)5uW (xW ,t)1VW , the Fourier modes

uŴ (kW ,t) are transformed intouŴ 8(kW ,t)5e2 ikW•VW tuŴ (kW ,t)1dkW ,0WVW .
Therefore, ifkWÞ0W , we have for the temporal autocorrelatio
function

^uŴ 8~kW ,0!•uŴ 8~kW ,t !* &5^uŴ ~kW ,0!•eikW•VW tuŴ ~kW ,t !* &. ~4.1!

Suppose now thatVW is random, characteristic of the large
scale velocity field, and to simplify further supposeVW is a
centered Gaussian vector, independent of the small sc
(k!1/l 0). Then

^uŴ 8~kW ,0!•uŴ 8~kW ,t !* &5^eikW•VW t&VW ^uŴ ~kW ,0!•uŴ ~kW ,t !* &k!1/l 0 ~4.2!

5e2 1/2 k2^V2&t2^uŴ ~kW ,0!•uŴ ~kW ,t !* &k!1/l 0
,

~4.3!

where ^•&VW and ^•&k!1/l 0
denote, respectively, the averag

over the realizations of theVW process and over the realiza

tions of the small-scale dynamics. If^uŴ (kW ,0)•uŴ (kW ,t)* &k!1/l 0
is characteristic of the inertial dynamics, it is then expec
to scale with the local turnover time of the cascade, and
whole correlation function is thus dominated by th
exp(21

2k
2^V2&t2) term ast→1`. This simple argument sug

gests that it is the random nature of the phase induced by
large-scale sweeping that is the primary process in the d
rrelation of the Fourier modes, so that the sweeping eff
has no dynamical link with the weak intermittency of th
individual Fourier modes.

B. Fourier modes and shell and tree models

In recent years, the so-called shell models and tree mo
of turbulence have received considerable interest@39#. In
particular, it is well-known that for certain values of its p
rameters, the Gledzer-Ohkitani-Yamada~GOY! shell model
reproduces very well the exponents of the structure functi
measured in real flows. These toy models can be regarde
simplified and phenomenological mode decompositions
share the main symmetries and structural properties of
3-9
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CÉDRIC BRUN AND ALAIN PUMIR PHYSICAL REVIEW E 63 056313
NS equations. The Fourier representation is indeed on
particular complete functional basis. We discuss briefly so
properties of these simplified dynamical models with reg
to the influence of the density and type of nonlinear co
pling.

The so-called reduced wave-vector set approxima
~REWA, see e.g. Ref.@40#! model consits in solving the
incompressible NS equations on a geometrically scaling s
setK of wave vectors in Fourier space:K5ønKn with Kn

52nK0 and K05$6kW0
a :a51, . . . ,N%. Each of the wave-

vectors shellKn represents an octave of wave numbers. T
nonlinear term is restricted to neighboring shells, thus lo
in k space. Numerical simulations showed that the REW
model displays only weak intermittency, whatever the cho
of the variables@ û(k), Du(r ), or the shell energyEn

5(kWPKn
uuŴ (kW )u2]. This feature has been attributed to th

wave-vectors mode representation that does not take into
count the scale densification@40#. It has also been observe
that increasing the numberN of modes in each shell result
in weaker intermittency~measurements done for the sh
energies! @41#. We propose the following interpretation o
this effect, which is also linked with the absence of sc
densification. We introduce the short-hand notation:kWn

a

[2nkW0
a and uŴ n

a[uŴ (kWn
a ,t). Latin superscripts label shell

while Greek superscripts label subsystems. The REW
equations may be written under the form:

@] t1n~kn
a!2#uŴ n

a52P~kWn
a!+ (

b,g;m,l

kWn
a

5kWm
b

1kW l
g

um2nu,R
u l 2nu,R

~ ikW l
a
•uŴ m

b !uŴ l
g ,

~4.4!

whereP(kWn
a) denotes the projector on the plane perpendi

lar to kWn
a . Thus one may like interpreting the REWA mod

as describing a set ofN subsystemsuW a(xW ,t)[(n(eikWn
a
•xWuŴ n

a

1c.c.) in interaction

] tuW a~xW ,t !5(
b,g

Pa
R@~uW b•¹W !uW g#1n¹2uW a~xW ,t !. ~4.5!

Let us remark that due to the incompressibility, parallel wa
vectors cannot interact, so there are no ‘‘internal’’ intera
tions for any subsystem. Further, since the NS equations
invariant under rotations~for L→`), the N directions of
space6kW0

a , and so theN subsystems, should play approx
mately the same role forK0 well chosen. Therefore the na
ture of the nonlinear energy exchanges in the REWA mo
is fundamentally different from what happens in NS turb
lence, and is rather reminiscent of the spherical shell mo
introduced by Eyink@42#. A salient feature of shell models i
the existence of coherent solitonlike structures that run do
the cascade@43,44#. In the case of the spherical shell mod
studied in Ref.@45#, the PDF of the instantaneous expone
05631
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of the global energy transfer suggests that pulses transpo
anomalous fluctuations are destroyed by ‘‘intersubsyste
mixing’’ by ‘‘mixing among other subsystems’’ whenN
→`, thus restoring K41 scaling in the limit. On the crud
level of our analogy, it seems possible that a similar mec
nism is at work in the REWA model.

It is worth noting that the same tendency toward a le
intermittent regime when increasing the number of coupl
has also been observed in the so-called tree models of tu
lence @34#. At the difference of the REWA model, the tre
models take into account the scale densification. The p
sible choice of nonlinear interactions are phenomenolo
cally motivated by requiring a certain degree of locality, bo
in Fourier and real space. Using different sets of nonlin
interactions~conserving energylike and helicitylike quant
ties!, it was shown that the presence of horizontal coupl
~i.e., spatial coupling at a given scale! results in a weaker
intermittency. In fact, at a given analyzing scale of the t
bulent velocity field, the only way energy localization cou
be avoided is by a strong energy mixing in space@46#.

But what is the relationship to the NS equations, where
infinite number of triadic interactions is involved? Our n
merical results show that as far as individual Fourier mo
are concerned, even whenl 0;L, only a weak intermittency
is observed. This strongly indicates that shell or tree va
ables should not be assimilated with Fourier modes but
rather akin to wavelets coefficients as originally and usua
argued~see e.g., Refs.@47,34#!. It is as if, in a statistical
sense, simple dynamical models were able to take into
count the net effect of complex phase coupling and inco
pressibility or geometry constraints ink space. Since when
l 0 /L→0, the spectral density of modes is increased, and
may want to link the spatial central limit effect for the ind
vidual Fourier modes with an increase of nonlinear coupli
Due to the way the Fourier modes become more dense an
the unchanged intermittency of the real-space turbulent fie
when l 0 /L→0, the mechanism at work in NS is certain
different than in REWA or tree models. It is just tempting
say that asl 0 /L→0, the fluctuations of an individual Fourie
mode is the sum of many excitations, which are nearly s
tistically independent, see the next section.

One of the major conclusions of this paper is that t
statistical properties of the Fourier modes in turbulent flo
have nothing to do with the variables used in shell mod
The latter are akin to wavelet coefficients, and allow to pro
more directly intermittency effects.

C. Multi-k correlations

As inertial Fourier components become individua
Gaussian in the limitl 0 /L→0, intermittency should be
viewed as a collective phenomena ink space. So one may
look at correlatorŝû(kW1) . . . û(kW p)&, which appear naturally
in Fourier expression of̂(Du)p&, with the hope of taking
into account phase coupling between modes (kW11•••1kW p

50W is required when the flow is homogeneous!.
We first refer to the ‘‘weak dependence principle

~WDP! introduced in the context of the DIA@35# in order to
discuss qualitatively this issue. Let us briefly recall the we
3-10
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coupling argument due to Kraichnan. Taking cyclic boun
ary conditions on a box of sizeL, the incompressible Navier
Stokes equations may be written in the Four
representation under the form

~] t1nk2!uŴ ~kW !52P~kW !+ (
pW 1qW 5kW

@ ikW•uŴ ~pW !#uŴ ~qW !, ~4.6!

whereP(kW ) denotes the projector on the plane perpendicu

to kW . Consider a wave vectorkW8 with kW8Þ6kW , and suppose

the statistical dependence betweenuŴ (kW ) anduŴ (kW8) being in-
duced wholly by the nonlinear term in~4.6!. We see that the

wave vectorkW8 appears only twice in the convolution, onc

aspW and once asqW , thus making a very weak contribution t
the sum. As the spectral density of Fourier modes increa
whenL→`, the WDP postulates that the normalized Four

modesuŴ (kW )/^uuŴ (kW )u2&1/2 anduŴ (kW8)/^uuŴ (kW8)u2&1/2 become sta-
tistically independentin the limit L→` ( l 0 is supposed
fixed!. Note that the WDP does not differentiate the intera
ing variables on a statistical level, and is defined in terms
a limiting process. In the case of the random coupling mo
@48#, the WDP applied to a finite number of individual var
ables is an exact result when their total number increase
infinity. But in the case of the NS equations at small b
finite l 0 /L ratio, due to the influence of intermittency, on
may expect the Fourier modes to be correlated with
strength depending on the wave numbers they involve~we
shall go back to this point later!.

A Fourier mode being a complex quantity, its statist
should be understood as the joint statistics of its real

imaginary parts. In fact, supposinguŴ (kW50W )50W , Re@uŴ (kW )#

and Im@uŴ (kW )# are not directly connected by the nonline
term of Eq. ~4.6!. Invoking the WDP, we infer that thei
statistical dependence is very weak, infinitely weak in
limit L→` ( l 0 fixed!. The same reasoning may be applied

the components of the vectoruŴ (kW ).
Finally, if in addition we take into account the centr

limit effect on the individual Fourier modes, we have t

conclusion that the joint PDF ofuŴ (kW ) and uŴ (kW8) becomes
Gaussian in the limitl 0 /L→0, as the product of univariat
PDF’s of independent Gaussian random variables. The ab
arguments apply by extension to anyfinite number of modes.
Even whenl 0;L, based on our numerical results on t
univariate statistics of Fourier modes and due to the h
number of modes in interaction, we expect that inertial m
tivariate statistics of a finite number of Fourier modes co
only be close to Gaussian in turbulent homogeneous flow
finite Reynolds number. However, we expect the differen
with Gaussianity to increase with the scales.

The WDP is in agreement with an approach based o
r-space cumulant expansion of^û(kW1) . . . û(kW p)&. For sim-
plicity, we consider the casep54. We denoteû(kW ) a com-

ponent of the vectoruŴ (kW ). It is straightforward to show tha
05631
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^û~kW1!û~kW2!û~kW3!û~kW4!&

5dkW11kW2
dkW31kW4

^û~k1!û~k2!&^û~k3!û~k4!&

1dkW11kW3
dkW21kW4

^û~k1!û~k3!&^û~k2!û~k4!&

1dkW11kW4
dkW21kW3

^û~k1!û~k4!&^û~k2!û~k3!&

1e~kW1 ,kW2 ,kW3 ,kW4!, ~4.7!

where

e~kW1 ,kW2 ,kW3 ,kW4!

[
1

L12E E E E d3x1 d3x2 d3x3 d3x4

3e2 i (kW1•xW11•••1kW4•xW4)^u~xW1!u~xW2!u~xW3!u~xW4!&c,

~4.8!

and ^u(xW1)u(xW2)u(xW3)(xW4)&c is the cumulant of

^u(xW1)u(xW2)u(xW3)u(xW4)&. If l 0 is kept fixed, one infers tha
@18#

e~kW1 ,kW2 ,kW3 ,kW4!/N~kW1 ,kW2 ,kW3 ,kW4!→0 as L→`,
~4.9!

where

N~kW1 ,kW2 ,kW3 ,kW4!

[^uû~kW1!u2&1/2^uû~kW2!u2&1/2^uû~kW3!u2&1/2^uû~kW4!u2&1/2.

~4.10!

The WDP applied to ^û(kW1)û(kW2)û(kW3)û(kW4)&/
N(kW1 ,kW2 ,kW3 ,kW4) leads directly to the same result, exce
when the correlation̂ û(kW1)û(kW2)û(kW3)û(kW4)& collapses in
the fourth moment of asinglemode,^uû(kW )u4&.

Since^Du(rW)4& has an anomalous scaling behavior, an

^Du~rW !4&5 (
kW11kW21kW31kW450W

~eikW1•rW21!

3•••3~eikW4•rW21! ^û~kW1!û~kW2!û~kW3!û~kW4!&

~4.11!

53^Du~r !2&21 (
kW11kW21kW31kW450W

~eikW1•rW21!

3•••3~eikW4•rW21! e~kW1 ,kW2 ,kW3 ,kW4!, ~4.12!

thee(kW1 ,kW2 ,kW3 ,kW4) term has to embody the anomalous sc
ing. What is unclear to us is whether this scaling depends
the geometry of thekW j . For instance, whenkW152kW25kW35

2kW45kW , Eq. ~4.7! degenerates into

^uû~kW !u4&52^uû~kW !u2&21e~kW ,2kW ,kW ,2kW !. ~4.13!
3-11
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If e(kW ,2kW ,kW ,2kW ) has an anomalous scaling, it should
observable on̂ uû(kW )u4&/^uû(kW )u2&2 as k→`, in an infinite
Reynolds number situation. Observe that this does not o
in the simple synthetic wavelet cascade we considered
Sec. IV. For our NS simulation atRl;80 ~run NS3!, we
present in Fig. 6 the behavior of^uû(kW )u4&/^uû(kW )u2&222 vs
k in semilog coordinates. We observe a slight increase, c
to an exponential behavior.

Last, assuming the presence of an anomalous scaling
fixed not degenerated (kW j )1< j <4 geometry (kW11kW21kW31kW4

50W andkW iÞ6kW j ), we have

^û~lkW1!û~lkW2!û~lkW3!û~lkW4!&

^uû~lkW1!u2&1/2^uû~lkW2!u2&1/2^uû~lkW3!u2&1/2^uû~lkW4!u2&1/2

→` as l→`. ~4.14!

We recall that if theû(kW j ) are independent, then the correl
tion ^û(lkW1)û(lkW2)û(lkW3)û(lkW4)& is zero due to the spatia
homogeneity. Equation~4.14! means that the intermittenc
effects lead to a stronger and stronger correlation of the F
rier modes, as the wave numberk increases.

FIG. 6. ^uû6(k)u4&/^uû6(k)u2&222 vs k in semilogarithmic co-
ordinates for our run NS3 (Rl;80).
h

J

et

05631
ur
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a
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N-points real-space statistics contain indeed the corr
tions among Fourier modes and are easier to handle ex
mentaly or analytically. We note that in the context of t
weak wave turbulence theory@49#, a (k,v) formalism is ex-
plicitely involved, and a joint Gaussian approximation
used to derive the so-called Kolmogorov-Zakharov finite fl
solutions. In order to test the validity of the latter approx
mation, some kinds of real-space structure functions seem
us better suited than univariatek-space statistical tests like i
Ref. @50#.

V. CONCLUSION

The main result of this paper is to show by DNS that ev
when l 0;L, the individual Fourier modes are only weak
intermittent at high enough Reynolds numbers. Our res
are in qualitative agreement with recent ultrasound scatte
experiments@10#, but disagree with the numerical results o
tained in Ref.@19#.

Using a simple model of cascade defined on a dya
structure@28#, we illustrated how a spatial decorrelation pr
cess through the inertial scales may explain the weak ine
intermittency of theû(k); in true turbulent dynamics, we
expect this decorrelation process to breakdown in the di
pation range, thus allowing the known dissipative interm
tency of theû(k) askh→`.

We then addressed our results on a more general gro
We discussed our findings with regard to the temporal au
correlation function of theû(k), and also with regard to
some simplified mode decomposition approaches to tur
lence. Last, we discussedk-space inertial multivariate statis
tics, with arguments indicating that the latter is also plagu
by an influence of thel 0 /L ratio.
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